Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Novel Approach to Create Dimensional Tolerance Requirements from Expert Knowledge

2017-03-28
2017-01-0241
Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
Journal Article

Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

2017-03-28
2017-01-0228
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial software packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In the present study, SMC plaques are prepared through compression molding process.
Journal Article

Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

2017-03-28
2017-01-0229
Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this work, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. For multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Journal Article

Analyzing Customer Preference to Product Optional Features in Supporting Product Configuration

2017-03-28
2017-01-0243
For achieving viable mass customization of products, product configuration is often performed that requires deep understanding on the impact of product features and feature combinations on customers’ purchasing behaviors. Existing literature has been traditionally focused on analyzing the impact of common customer demographics and engineering attributes with discrete choice modeling approaches. This paper aims to expand discrete choice modeling through the incorporation of optional product features, such as customers’ positive or negative comments and their satisfaction ratings of their purchased products, beyond those commonly used attributes. The paper utilizes vehicle as an example to highlight the range of optional features currently underutilized in existing models. First, data analysis techniques are used to identify areas of particular consumer interest in regards to vehicle selection.
Journal Article

Side Impact Pressure Sensor Predictions with Computational Gas and Fluid Dynamic Methods

2017-03-28
2017-01-0379
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
Journal Article

Effects of Material Touch-Sounds on Perceived Quality of Surfaces

2017-03-28
2017-01-0495
The vehicle interior constitutes the multi-sensory environment of driver and passengers. Beside overall design and execution, materials and its surfaces are of specific interest to the customer. They are not only needed to fulfil technical functions, but are in direct focus of the customer’s perception. The perceived quality is based on all sensory data collected by the human perceptual system. Surfaces express design intent and craftsmanship by their visual appearance. Haptic features supervene when materials are touched. And even smell has an influence on the perception of ambience. Although sound is generated nearly every time when fingers slide across a surface, touch-sounds have been disregarded so far. In various cases, these contact sounds are clearly audible. As essential sound responses to haptic activity, they can degrade perceived quality. A method has been developed for a standardized generation of touch-sounds.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Journal Article

Interpolated Selective Area Mechanical Roughening for Thermally Sprayed Engine Bores

2017-03-28
2017-01-0452
Thermally sprayed engine bores require surface preparation prior to coating to ensure adequate adhesion. Mechanical roughening methods produce repeatable surfaces with high adhesion strength and are attractive for high volume production. The currently available mechanical roughening methods are finish boring based processes which require diameter-specific tooling and significant clearance at the bottom of the bore for tool overtravel and retraction. This paper describes a new mechanical roughening method based on circular interpolation. This method uses two tools: a peripheral milling tool, which cuts a series of concentric grooves in the bore wall through interpolation, and a second rotary tool which deforms the grooves to produce an undercut. This method produces equivalent or higher bond strength than current surface preparation methods, and does not require diameter-specific tooling or bottom clearance for tool retraction.
Journal Article

Impact of Rivet Head Height on the Tensile and Fatigue Properties of Lap Shear Self-Pierced Riveted CFRP to Aluminum

2017-03-28
2017-01-0477
Tensile and fatigue properties of continuous braided carbon fiber reinforced polymer (CFRP) composite to AA6111 self-piercing riveted (SPR) lap shear joints are presented. Rivets were inserted at two target head heights separated by 0.3 mm. Even within the narrow range of head heights considered, the flushness of the rivet head was found to have a dominant effect on both the monotonic and fatigue properties of the lap shear SPR joints. Joints created with a flush head resulted in a greater degree of fiber breakage in the top ply of the CFRP laminate, which resulted in lower lap shear failure load as compared to SPR joints produced with a proud rivet head. Irrespective of the lap shear failure load, rivet pullout was the most common failure mode observed for both rivet head heights. In fatigue tests, the SPR joints produced with a proud head exhibited higher fatigue life compared to SPR joints produced with a flush head.
Journal Article

Data Driven Calibration Approach

2017-03-28
2017-01-0607
Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Journal Article

Multi-Objective Optimization of Transient Air-Fuel Ratio Limitation of a Diesel Engine Using DoE Based Pareto-Optimal Approach

2017-03-28
2017-01-0587
Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

In-Vehicle Characterization of Wet Clutch Engagement Behaviors in Automatic Transmission Systems

2018-04-03
2018-01-0395
A new generation of a planetary-gear-based automatic transmission system is designed with an increasing number of ratio steps. It requires synchronous operation of one or more wet clutches, to achieve a complex shift event. A missed synchronization results in drive torque disturbance which may be perceived by vehicle occupants as an undesirable shift shock. Accurate knowledge of clutch behaviors in an actual vehicle environment is indispensable for achieving precise clutch controls and reducing shift calibration effort. Wet clutches are routinely evaluated on an industry-standard SAE#2 tester during the clutch design process. While it is a valuable tool for screening relative frictional behaviors, clutch engagement data from a SAE#2 tester do not correlate well with vehicle shift behaviors due to the limited reproducibility of realistic slip, actuator force profiles, and lubrication conditions.
Journal Article

Multidisciplinary Optimization of Auto-Body Lightweight Design Using Hybrid Metamodeling Technique and Particle Swarm Optimizer

2018-04-03
2018-01-0583
Because of rising complexity during the automotive product development process, the number of disciplines to be concerned has been significantly increased. Multidisciplinary design optimization (MDO) methodology, which provides an opportunity to integrate each discipline and conduct compromise searching process, is investigated and introduced to achieve the best compromise solution for the automotive industry. To make a better application of MDO, the suitable coupling strategy of different disciplines and efficient optimization techniques for automotive design are studied in this article. Firstly, considering the characteristics of automotive load cases which include many shared variables but rare coupling variables, a multilevel MDO coupling strategy based on enhanced collaborative optimization (ECO) is studied to improve the computational efficiency of MDO problems.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

2016-04-05
2016-01-0498
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
X